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Abstract--The analysis of deformed inscribed grids (or equivalent particle points) from scale-model experiments 
permits a very detailed investigation of the progressive development of geological structures. Numerical methods 
to calculate values related to the finite deformation (strain elhpse, fimte rotaUon and displacement) and to the 
instantaneous deformation rate (velocity, stretching rate, vorticity, kinematical vorttcity number, spm) from the 
co-ordinates of digitized grid nodes are summarized. These values can be plotted directly (e.g. as principal strain 
axes) or their magnitudes can be contoured across the surface of the model. Particular consideration is given to 
the practical advantages of separating the overall heterogeneous deformation into an average homogeneous 
component and an additional heterogeneous component representing deviations away from this standard state. 
This approach corresponds closely to the concept, commonly used in the analysis of mechanical instabihty, of a 
perturbation superimposed on a basic steady flow. 

INTRODUCTION 

Or~E significant advantage of experimental studies of 
deformation structures lies in the ability to analyse the 
progressive displacement and deformation history in a 
detail which is unattainable in natural field examples. 
The potential of this approach could only be fully 
exploited with the advent of digitizing tablets and digital 
computers as, without these aids, the calculations are 
too tedious to be repeated hundreds of times across the 
surface of a single scale-model. Many earlier experi- 
ments utilized circles imprinted on the model surface 
(Ramberg 1959, Ghosh 1975, Ghosh & Ramberg 1976, 
Gairola 1978). This approach has the advantage of 
immediately visualizing the accumulated finite strain, 
but is not well suited to a more extensive analysis of the 
progressive deformation. In those cases where a grid was 
inscribed, the deformed grids were often used as excel- 
lent visual aids (Ramberg 1961, 1963, 1964, Hudleston 
1973, Neurath & Smith 1982), but only rarely were they 
further utilized for quantitative analysis (Dixon 1974, 
Cobbold 1975). Fine grids have also been introduced 
between split rock cylinders to investigate strain hetero- 
geneity on a grain scale during experimental rock defor- 
mation (Fitz Gerald & Chopra 1984) and pioneering 
studies of microfabric development using analogue 
materials have also used scattered opaque particles to 
determine the strain distribution (Means 1983). 

This paper describes numerical routines for the exten- 
sive analysis of digitized grid nodes (Fig. 1) or particle 
points. These routines have been implemented as a 
freely available, menu-driven program for Apple 
Macintosh computers. The implementation is ideally 
suited to experiments where direct observation can be 
made during deformation, as, for example, in many 
analogue deformation machines (Cobbold 1975, Means 
1983, Mancktelow 1988). 
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Fig. 1. Plot of the digitized deformed grid from a smgle-layer fold 
experiment at 25% bulk shortening. Layer and matrix were con- 
structed of paraffin wax with different melting point ranges, to give an 
effective viscosity contrast of ca 30:1. Deformation geometry was pure 
shear. The grids for layer and matrix, which are shown exploded m the 
figure for clarity, were digitized separately as there has been slip along 
the layer-matnx interface. All further figures in this paper relate to 
this deformed grid, which records a particular instant in the progres- 

sive deformation history. 

GENERALBACKGROUND 

The analysis of deformed grids is clearly based on 
the geometry of finite and infinitesimal strain, which is 
thoroughly described in many standard texts on con- 
tinuum mechanics and the theory of plasticity (e.g. 
Jaeger 1962, Biot 1965, Malvern 1969, Chakrabarty 
1987). Results are presented here in a form that is 
convenient for numerical solution using the available 
data, namely the co-ordinates of the grid nodes digitized 
at discrete intervals during a progressive deformation. 

First consider the most general case. Let q, denote the 
components of some vector quantity at the point P, 
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whose posmon at a particular time t is given by the co- 
ordinates x,, and whose position at time t = 0 was x ° 
Consider also a neighbouring point Q at an infinitesimal 
distance from P, the current co-ordinates of Q being 
x, + 6x,. The change in value of the vector quantity q, in 
going from P to Q is given by: 

bq, = aq, 6Xl, (1) 
cqx I 

where aq,/axj represent the components of the gradient 
tensor in q at the point P. If these gradient components 
do not vary with position x,, then the distribution is 
homogeneous, the requirement that the distance be- 
tween P and Q be infinitesimal can bc relaxed, and (i) 
will be true for any two points. If the gradients in qi vary 
slowly with x,, then these gradients may be considered 
approximately constant for a small region around P and 
the variation in the quantity q, can bc considered in 
terms of a series of approximately homogeneous 
domains. 

For dcformcd grids, the analysis is restricted to two 
dimensions, and thc quantities of interest are the dis- 
placement, the velocity and the acceleration. These 
quantities arc related to position, as in (I) above, by the 
respective displacement, velocity and acceleration 
gradients in the two co-ordinate directions xl and x2. 
The gradients can be calculated directly at any point P by 
fitting a smooth surface to the variation in ql with 
position (Xl, x2), determining the gradients by differen- 
tiation in the xl direction aql/axl and in the x2 direction 
Oqflax2, and then rcpcating the exercise for q~_ to give 
Oq2/ax I and aq2/ax2. In practice, this can be done very 
cfficicntly using a bi-cubic spline interpolation (e.g. 
Ahlbcrg et al. 1967), if the known values of q, corre- 
spond to positions on a rectangular grid. The gradient 
values required generally relate to the deformed state 
and the deformed grid is unlikely to be rectangular. The 
initial undeformed grid may easily bc made rectangular, 
however, and if the gradients are first calculated relative 
to the initial position co-ordinates x °, a simple relation 
can be established between these gradient components 
and the components relative to the current co-ordinates 
x,. The co-ordinates xi arc related to their initial position 
by the co-ordinate transformation 

x, = Cu x° + d,. 

The difference in position between two neighbouring 
points is, therefore, 

6x I = Cd6X 0 

or, on rearrangement, 

6x ° = b,ldxl, (2) 

where the matrix represented by the components b u is 
simply the inverse of the matrix with components c, r 
The relationship, analogous to (1) above, between the 
value of q, and the initial co-ordinates x ° is: 

aq, Xx0 6q, = ~x, ~ l" (3) 

Substituting for 6x ° using (2) gives: 

Oq, 
bq, = ~ b#6x k (4) 

and comparing equation (4) to equation (1), it is clear 
that the gradient matrix components relative to current 
co-ordinates is the same as that obtained by post- 
multiplying the gradient matrix relative to original co- 
ordinates by the Eulerian co-ordinate transformation 
matrix bjk, which relates the current co-ordinates to 
their initial position (cf. equation 60 in Hsu 1967). 

If the initial grid is perfectly rectangular, the gradients 
at any point can be calculated in one pass, fitting the bi- 
cubic spline surface to the variation in qi across the 
whole surface. As the interpolated surface is composed 
of a series of cubic polynomial segments in the xl and x2 
co-ordinate directions, the first and second derivatives in 
these directions are continuously and easily calculated. 
In practice, inscribed grids are often only approximately 
rectangular. To allow for this experimental inaccuracy, 
calculation can be restricted to a moving window of 
elements, where gradients are only determined within 
the central element (with necessary exceptions for edge 
and corner elements of the whole grid) and values at 
shared edge and node points are averaged over adjacent 
elements. 

The main advantage of this direct method using a bi- 
cubic spline surface is that values can be obtained at any 
point across the grid surface, allowing for interpolation 
between grid nodes. The smoothing effect of surface 
fitting is generally an advantage, but can be a disadvan- 
tage when real discontinuities occur in the model, for 
example along material interfaces. The method can 
obviously not be applied when the initial g#d is far from 
rectangular: more general (and more calculation inten- 
sive) methods of surface-fitting must be employed. 

Alternatively, use can be made of the concept of 
approximate local homogeneity over a small area. If the 
gradient components aqJ0xj can be assumed to remain 
constant in value over this small area, then relation (1) 
gives two equations in four unknowns. Clearly, the 
values of q. at some other point Q' are also required to 
give four equations in four unknowns, and a unique 
solution. The three points P, Q and Q' together build a 
triangle, which is the smallest surface element (these 
points should not, of course, be colinear), and the 
gradient components in the Xl and x2 directions of this 
small surface element can be readily determined. Every 
quadrilateral element of a grid can be divided into four 
such triangles. 

Consider first the equations for 6ql (in each case, 6xi, 
6x~ and 6q~ indicate increments measured between 
points P and Q',  rather than between points P and Q): 

6x, 6x21(Oq,/ax,l=(bq,l. 
6x'~ 6x~fiaql/ax2/ k6q~] (5) 

Solution is trivial, by matrix inversion, and is given by: 

(Oql/Oxl] = 1[ 6x~ -6x2V6ql ] 
Oql/OX2] D \--bxj 6xl}k6qi]' (6) 



Progressive deformation from an inscribed grid 861 

where D is the determinant, that is, 

D = 6x~6x~ - 6x'16x2 

which will be non-zero if the points P, Q and Q' are not 
colinear. The solution for the gradient components 
related to the 6q2 values is completely analogous: 

Oq2/OXll 1 ( 6x~ -6x21(6q2 I 
aq21ax2} = D \-6xl 6xlJ\aq~}" (7) 

This solution gives the gradients in terms of the de- 
formed position co-ordinates aq,/axi, but the result for 
gradients relative to the initial co-ordinates aq,/ax ° is 
identical in form, and can readily be obtained by simply 
substituting values of 6x ° for the equivalent values of 6xt 
in (6) and (7). 

The use of three points permits a unique solution for 
the gradients. If more points are included, the problem 
is overdetermined and a least-squares 'best-fit' solution 
to the set of linear equations is required (Lawson & 
Hanson 1974). This allows an 'average' value to be 
calculated for each quadrilateral grid element with four 
nodal points. An example is given in Fig. 2, where the 
average displacement gradients were calculated for each 
grid element and from these the average finite strain (see 
below). When applied to all nodes of the grid, this least- 
squares method can also be used to determine an aver- 
age bulk 'homogeneous' value for the digitized grid 
surface as a whole. 

FINITE STRAIN 

Finite strain is related to variations in the displace- 
ment of particles, and thus directly to the displacement 
gradient tensor. As translation alone does not produce a 
change in shape, the analysis of finite strain around a 
point P can be simplified by tying the origin to this 
material point (so-called material co-ordinates), such 
that P always has co-ordinates (0, 0). In this case, the 
general relation (3) reduces to: 

au, 0 (8) Ut=~xjoXj '  
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F]g. 2. Prinopal axes of the average finite strain ellipse for each 
quadrilateral grid element, calculated by the least-squares best-fit 

solution of the overdetermined set of linear equations (see text). 

where u, is the displacement vector of point Q relative to 
its initial position and x ° are the initial co-ordinates of 
point Q, established within the material co-ordinate 
system fixed to P. The position of point Q in the 
deformed state x i is, of course, equal to the original 
co-ordinates x ° plus the displacements u ,  hence: 

0 OUl 0 X~=X0+U,  = x .  +~Xj  x, 

which, in full matrix form, gives: 

1 Oul 

OU2 
x2 

aul  ~ -- 0 

OU21 • o 
l + ~ x ~ /  k x2 

(9) 

(e.g. Hsu 1967, equation 58). This is the co-ordinate 
transformation linking the deformed co-ordinates to 
their initial positions, and the components of the trans- 
formation matrix above are directly equivalent to the 
values 

(a :) 
used in Appendix B of Ramsay & Huber (1983), where 
equations for the direction of principal strains of the 
strain ellipse (B14), finite rotation (B16), magnitude of 
the principal strains (B19), ellipticity (B20) and area 
change (B22) are conveniently listed in terms of these 
components. 

The finite strain can also be calculated directly from 
three known stretches, that is from the change in length 
of the sides of the triangular element discussed above 
(e.g. Ramsay 1967, Sanderson 1977, Ramsay & Huber 
1983, Ragan 1987, De Paor 1988), or from a combi- 
nation of changes in angle and stretch (see Ramsay & 
Huber 1983 for a summary). These methods are essen- 
tial for determining finite strain from deformed fossils or 
other strain markers, but the solution presented above is 
more direct when the co-ordinate positions are known, 
as in the analysis of deformed grids. 

As shown by Hsu (1966), a two-dimensional defor- 
mation can arbitrarily be considered in terms of any 
combination of pure shear, simple shear and rotation. 
The equations relating these parameters to one another 
are grouped as equation (21) in that paper. In particular, 
the simple equation relating the value of the principal 
extension (as natural strain e) to the shear strain 
(sinh e = 7'/2) allows the average or bulk strain of a 
deformed grid to be readily expressed as either natural 
strain (or percentage shortening or ellipticity, if more 
convenient) or shear strain, whichever is more appli- 
cable to the experimental boundary conditions. 

RATE OF DEFORMATION 

The rate of deformation is related to variations in the 
velocity, that is the rate of change of position, of par- 
ticles. As noted by Hsu (1967), although velocity nor- 
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mally means the ttme rate of displacement, it ts more 
convenient m studying plastic deformation to define the 
rate m more general terms relative to some variable 2 
representing the progress of deformation.  Clearly, the 
relationship for the velocity components  v, i s  

0x, 0x~ 02 
v ,  - - ( 1 0 )  

Ot 02 Ot 

and the obvious chonce of variable 2 would be the bulk 
natural strain in a constant strain rate, pure shear experi- 
ment and the bulk shear strain for a simple shear 
experiment. In the implementation discussed here,  the 
user has the choice of natural strain, percentage shorten- 
lng, ellipticity or shear strain as the measure of defor- 
mation. An average bulk value is calculated for each of 
the input digitized grids, using the overdetermined least- 
squares method discussed above. The rates of displace- 
ment Ox,/02 are determined by fitting a spline curve 
interpolation to the values of x, vs 2 (cf. Ahlberg et al. 
1967), and determining the first derivative at the particu- 
lar value of 2 chosen by the user for plotting (clearly 
plots can also be interpolated to values of bulk strain 
between those of the input grids). The second derivative 
corresponds to the acceleration a, (see the section on 
'spin' below). The values of velocity v, can then be used 
to determine the velocity gradient matrix ~ = (0v,/Oxj), 
and the acceleration a, the acceleration gradient matrix 
a,~ = (0aJ0xj), in the general manner established for all 
such vector quantities above. 

As can be found in many standard texts on plasticlty 
(e.g. Chakrabarty 1987), the principal directions of the 
rate of deformation make an angle 0 with the xl axis 
given by 

tan 20 - vg2 + vgt (11) 
Vl l - 

and the magnitude of principal strain rates are given by 

kl,k 2 = ~(171g I -4- v292) 4- ½~¢/(Vlgl - 1~22) 2 -~- (Fig2 .~- 1~21) 2. 
( 1 2 )  

These values can be plotted directly (Fig. 3), or their 
magnitudes contoured across the surface of the model.  

VORTICITY 

Vorticity is defined as the curl of the velocity field (e.g. 
Truesdell 1954), from which it follows that the magni- 
tude of the vorticity is given by the relation 

lWl = ~ ,  - ~2. (13) 

This value is equal to the combined angular velocity of 
those material lines which are instantaneously parallel to 
the principal directions of the rate of deformation.  Since 
these lines remain instantaneously perpendicular,  it is 
also equal to twice the angular velocity of either one of 
these lines taken individually (Means et  al. 1980). Using 
equation (13), the magnitude of the vorticity can be 
determined from the off-diagonal components  of the 
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Fig. 3. Plot of the intensity of the rate of deformation within the 
matrix. The orientation of the line segments is parallel to the major 
principal axis and the length is proportional to the value of n, the 
second moment of the rate of deformatxon tensor (e.g Means et al. 
1980). This is an mvariant quantity related to the magnitude of the 
principal strain rates (equatnon 12), by: H = ~ + ~ This value is a 
measure of the intensity of the rate of deformation and appears in the 
denominator of the expression defining the kinematical vorhclty 

number (equation 15) 

velocity gradient tensor and contoured across the sur- 
face of the model (e.g. Fig. 4). 

Vorticity can only be described relative to a particular 
co-ordinate system, which may itself be rotating relative 
to some other  co-ordinate system. In this sense, there is 
no 'absolute' value of vorticity. Reference axes can be 
chosen which most simplify the analysis and emphasize 
the physical significance. One such reference frame is 
that with axes parallel to the principal directions of the 
rate of deformation (sometimes called the stretching 
axes, cf. equation 11). The vorticity relative to these 
axes has been termed the 'internal vorticity' by Means et 
al. (1980), or the 'shear induced vorticity' by Lister & 
Williams (1983). The component  of the vorticity related 
to the rotation of the stretching axes themselves relative 
to the chosen 'fixed' external reference frame has been 
termed the 'spin component '  by Means et al. (1980) and 
Lister & Williams (1983), although historically the term 
spin has been used rather indiscriminately for any form 

o.o-l.o l i l  1.oo3.o I 3.o-s.o B B  s.o-'t.o B B  7.o.o.o 

FLg 4. Contour plot of the total vortlclty (equation 13) within the 
matrix, relative to external reference axes fixed to the frame of the 

defonnanon rig 
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of rotation (e.g. Truesdell 1954). To obtain a value for 
the 'internal vort~city', the 'spin component' must first 
be determined and subtracted from the total vorticity as 
calculated above. 

The orientation of the principal directions of the rate 
of deformation relative to the external reference system 
is determined via equation (11) by the velocity gradient 
components. It is clear, therefore, that the orientation of 
these directions can only change during progressive 
deformation if the velocity gradient components them- 
selves change, that is, if there are accelerations relative 
to the chosen reference system. The magnitude of the 
spin is defined as the angular velocity relative to the 
chosen external reference system of the two principal 
directions, or twice that of one such principal direction 
(Means et al. 1980). It can be derived by differentiating 
equation (11) with respect to Z, the measure of progress- 
ive deformation, to obtain (after some rearrangement) 
the angular velocity of the principal axis 00/02, and then 
simply multiplying by two to give the magnitude of the 
spin W', 

Iw'l (a~ - a~)(v~2 + V2gl) -t- (Ygl - Y292)(~2 q- a~)  
= ( v ~  - v ~ )  ~ + ( v ~ :  + V~l)  ~ ' 

(14) 

where a~ represent the acceleration gradient matrix 
components. It is clear from this equation that if all a~aj 
components are zero, the value of IW'I must also be 
zero, and the stretching axes do not rotate in this 
reference frame. It is also clear that if the rate of 
deformation is zero, then the principal directions are 
indeterminate and the spin component itself is indeter- 
minate. For very low deformation rates, the accuracy of 
the result for the spin value will depend markedly on the 
numeric precision of the variables used in the calculation 
(standard precision on microcomputers is usually 32 
bit). 

Truesdell (1953) introduced the concept of a kinema- 
tical vorticity number, which can be calculated from the 
vorticity and the principal stretching rates via the 
equation: 

In the original definition, as also followed by Passchier 
(1987), the vorticity is the total vorticity relative to the 
chosen external reference frame, but Means et al. (1980) 
suggest that it would be more appropriate in studying 
geological structures to only include the 'internal vorti- 
city', i.e. minus the 'spin component', in the kinematical 
vorticity number. 

PARTITIONING OF HOMOGENEOUS AND 
HETEROGENEOUS FLOW COMPONENTS 
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Fig. 5. Finite vector displacement field of the heterogeneous com- 
ponent  of  the deformation. The arrows join the position which would 
be occupied if the deformation had been homogeneous  to the actual 

digitized posRion of the gnd node.  

ous distribution across the whole grid Mh, and an addi- 
tional perturbation component Mp superimposed upon 
this background value, which describes the hetero- 
geneous variation across the grid surface. For finite 
values related to the displacement gradient matrix, the 
relationship is 

therefore 

M = Mp'M h 

Mp = M" Mffl, (16) 

where -1 indicates the matrix inverse. The multiplica- 
tion is non-commutative and the choice of order is 
significant. For instantaneous deformation rates related 
to the velocity gradient matrix the relationship is 

M = M p  -I- M h 

therefore 

Mp = M - Mh (17) 

and the choice of order is not significant. The com- 
ponents of M h are calculated, as outlined above, by 
including all grid nodes in an overdetermined least- 
squares solution to a set of equations such as (5). The 
solution, using standard numerical subroutines (e.g. 
Lawson & Hanson 1974), is fast, even for large grids 
with more than 1000 nodes. The relations (16) and (17) 
can then be used to determine the matrix for the hetero- 
geneous perturbation component, and these values sub- 
stituted in the equations summarized above to produce 
plots of perturbation displacement (Fig. 5), finite strain 
(Fig. 6), rotation, velocity, rate of stretch, etc. These 
plots are particularly useful in analysing the develop- 
ment of mechanical instabilities such as folds, boudins 
and shear zones, which represent growing heterogen- 
eities superimposed upon a basic homogeneous flow 
(Ramberg 1961, Biot 1965, Cobbold 1977a,b). 

The gradient tensor components Oqt/Ox j from the 
general equation (1) discussed above can be fully rep- 
resented by the matrix M. This matrix may be par- 
titioned into a part describing the average, homogene- 

CONCLUSIONS 

Once the co-ordinates of known particles, con- 
veniently represented by the nodes of an inscribed grid, 
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F~g 6 Plot of In (Rp), where Rv is the elhptlclty (1 + el)/(1 + e2) of the 
perturbation fin,te strain ellipse related to the heterogeneous com- 
ponent of the deformation. This logarithmic representation has a value 
of zero for Rp = 1, provtdmg a better visual representatton of the 
variation in the heterogeneous strain component across the surface of 
the model (De Paor personal communication). The plot shows very 
clearly the tendency for stretch parallel to the layer on the outer are of 
the layer and m the adjacent matrix, with additional shortening 
parallel to the layer on the inner arc. This is characteristic of buckle 

folds both in the laboratory and m nature. 

have been established at various stages of deformation 
by manual digitizing, much information can be extracted 
with httle additional effort. General methods for the 
determination of the spatial gradients in any vector 
quantity can be used to calculate the displacement, 
velocity and acceleration gradient tensor components. 
Finite values of strain, rotation and area change can then 
be calculated from the displacement gradients, values of 
the instantaneous rate of deformation, vorticity and rate 
of area change from the velocity gradients, and values of 
the spin of the stretching axes from a combination of 
velocity gradients and acceleration gradients. These 
values may then be factorized into a background homo- 
geneous component and a superimposed heterogeneous 
component, which allows a more direct investigation of 
the progressive development of mechanical instabilities 
such as folds, boudins and shear zones. 
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